
 

 
 



 

Table of Contents 
Table of Contents​ 2 

Introduction​ 3 

System Overview and Field Validation​ 3 
Hardware Overview​ 4 

Design Overview​ 5 

T-Beam Enclosure​ 5 

Raspberry Pi Zero 2 W Hub Enclosure​ 7 

Software Architecture Overview​ 8 

Backend Service​ 8 

Meshtastic Integration​ 9 

Node State Model​ 9 

Persistence Layer​ 10 

Live Updates​ 11 

Authentication and Sessions​ 11 

API Surface​ 12 

Frontend Dashboard​ 12 

 

2 



 

Introduction

 
The goal of this project was to build a small, self-contained mesh 
communications and sensing system that can operate without any external 
network infrastructure. The system is designed to demonstrate how 
low-power, long-range radios can be combined with local web technologies 
to collect, relay, and visualize data from distributed devices. A key 
requirement is that the system remains fully local and offline, while still 
being accessible from common user devices through a standard web 
browser. 
 

System Overview and Field Validation 

At its core, this system is a way for small, battery-powered devices to talk to 
each other over long distances without relying on cellular networks, Wi-Fi 
infrastructure, or the internet. Each device can send short messages and 
status updates, and the network automatically figures out how to relay 
those messages across multiple hops until they reach their destination. A 
central hub can then collect everything the network is doing and present it 
in a form that is easy for a person to understand. 

In practical terms, this means devices can be placed far apart in the field and 
still communicate as long as there is a chain of nodes between them. 

3 



 

Messages do not need to travel directly from one device to another. Instead, 
intermediate nodes repeat traffic as needed, allowing the network to 
extend well beyond the range of a single radio link. 

The system was tested using three nodes: two end nodes and one 
intermediate relay positioned between them. In this configuration, the relay 
node acted as a hop, forwarding traffic between the two endpoints. Under 
normal outdoor conditions with a modest elevation difference, the network 
achieved a maximum tested range of approximately 12 kilometers between 
the two endpoints. This distance was reached without specialized antennas 
or towers, using standard LoRa hardware and typical environmental 
conditions. 

During testing, the nodes were able to reliably send and receive text 
messages across the mesh. Messages originating at one end node were 
successfully relayed through the intermediate node and received at the far 
endpoint, confirming correct multi-hop behavior. In addition to messaging, 
the system continuously logged GPS position data and telemetry from each 
node, including device status information. This data was collected by the hub 
and displayed in real time through the local web interface. 

These tests demonstrate that the system functions as intended both as a 
communications network and as a distributed sensing platform. Nodes are 
able to operate independently in the field, relay traffic for one another, and 
report their state back to a central hub. The result is a portable, 
infrastructure-free mesh network that can provide situational awareness, 
messaging, and telemetry over distances well beyond what short-range 
wireless technologies typically allow. 

Hardware Overview 
The mesh network itself is formed by LilyGO T-Beam devices running 
Meshtastic firmware. Each T-Beam integrates an ESP32 microcontroller, a 
LoRa radio, and GPS, allowing nodes to exchange messages and telemetry 
over a multi-hop LoRa mesh. These nodes act both as data sources and as 
relays, automatically forwarding traffic for other nodes in the network. 
 
The hub is built around a Raspberry Pi Zero 2 W connected to a T-Beam node 
over USB. The Pi runs custom hub software that interfaces with the mesh 
radio and serves a local web dashboard. Any device with Wi-Fi and a web 
browser can connect to the hub to view node status, telemetry, and 

4 



 

messages, making the system easy to access without specialized client 
software or an internet connection. 

Design Overview 

 
The physical design of the system focuses on durability, modularity, and ease 
of use, while keeping the overall form factor compact and practical for 
portability and field use. Both enclosures were designed specifically around 
their roles in the system and around how they are used together. 

T-Beam Enclosure 

 

 

5 



 

The T-Beam enclosure was designed as a snug, tool-free protective shell that 
clips together without screws or external hardware. The internal geometry 
closely follows the T-Beam PCB, ensuring the board is held firmly in place 
and protected from movement or impact. The enclosure is printed in ABS 
and avoids thin, unsupported features, which makes it mechanically strong 
and resistant to cracking. It has been drop tested and is robust enough to 
survive typical handling and accidental drops. 
 
Functional access was a key requirement. The case includes cutouts for the 
USB port, physical buttons, and the onboard display, allowing full use of the 
device without removing it from the enclosure. Two small external ears are 
integrated into the design to hold the LoRa antenna securely when it is not 
actively deployed, reducing strain on the connector and making the unit 
easier to transport. 

 
A defining feature of the T-Beam enclosure is the integrated bayonet-style 
connector at the bottom. This provides a standardized mechanical interface 
for modular attachments. Depending on the use case, this connector can 
accept a simple blanking plate, a magnetic mount for attaching the device to 
metal surfaces, or a mating connector on another enclosure. 
 

6 



 

Raspberry Pi Zero 2 W Hub Enclosure 

 
The Raspberry Pi Zero 2 W enclosure was designed with minimal size and 
hub-specific operation in mind. Openings are provided only for the two 
micro-USB ports: one for power input and one for the USB connection to the 
T-Beam acting as the radio bridge. 
 
Like the T-Beam enclosure, the Pi case is made of two snap-fit halves that 
can be opened without tools to access the board when needed. The top of 
the enclosure features a male bayonet connector that mates directly with 
the connector on the T-Beam case. This allows the Pi hub and the T-Beam to 
physically lock together into a single unit when operating in hub mode, 
making it easier to handle, power, and access the local web interface during 
setup or use. 

 
Together, the two enclosures form a modular physical system that mirrors 
the software architecture: independent components that can operate on 
their own, or securely combine into a compact, integrated hub when needed. 

7 



 

Software Architecture Overview 
 
The software component of this project is a self-contained local hub service 
designed to run on a Raspberry Pi Zero 2W. Its role is to bridge a low-power 
LoRa mesh network to a secure, offline web dashboard that users can access 
over local Wi-Fi. The system is intentionally cloud-free and dependency-light, 
prioritizing reliability, clarity, and ease of deployment in constrained 
environments. 
 
At a high level, the hub software performs four core functions. It interfaces 
with a Meshtastic radio over USB, maintains live and recent state for all mesh 
nodes, serves a browser-based dashboard over HTTP, and manages local 
authentication and session state. All of this logic lives in a single FastAPI 
application, making the system easy to work with, deploy, and extend. 
 

Backend Service 

 
The backend is a Python FastAPI application implemented in a single entry 
point, main.py. When started, it binds to 0.0.0.0 on port 8000 and serves 
both a REST API and a static frontend. The choice of FastAPI provides an 
asynchronous runtime, structured request handling, and clear separation 
between internal state and exposed endpoints, while remaining lightweight 
enough for the low processing power of a Pi Zero 2 W. 
 
Configuration is loaded at startup from config.json, with environment 
variables allowed to override sensitive values such as the password hash, 
session secret, serial port, and telemetry port number. This allows the same 
codebase to be used in development, testing, and deployment without 
modification. 
 

8 



 

Meshtastic Integration 

 

 
The hub connects to a Meshtastic-compatible radio over USB using the 
meshtastic.serial_interface.SerialInterface. Once connected, it subscribes to 
incoming packets from the mesh network. These include standard 
Meshtastic text messages as well as custom telemetry packets sent on a 
configured application port. 
 
Incoming packets are normalized immediately on receipt. Binary and 
protobuf-backed Meshtastic objects are converted into JSON-safe Python 
structures so they can be safely stored, streamed to clients, and serialized by 
FastAPI without runtime errors. This normalization layer is a key resilience 
feature, as it prevents API failures caused by unexpected packet contents or 
schema changes. 
 
 

9 



 

Node State Model 

 
The backend maintains an in-memory model representing the current view 
of the mesh. Each node entry tracks identifiers, optional nicknames, 
last-seen timestamps, recent telemetry samples, position data, device 
metrics such as battery level, and basic link statistics when available. 
Telemetry history and message logs are implemented as rolling buffers 
whose size is configurable, ensuring predictable memory usage. 
 
This in-memory model is treated as the authoritative live state. All API 
responses and live updates are derived from it, allowing the frontend to 
remain simple and stateless. 
 

Persistence Layer 

 
Persistence is optional and enabled via configuration. When active, the 
backend uses a local SQLite database named hub.db with WAL mode 
enabled. Telemetry records and message history are written to disk in a 
lightweight schema designed for append-heavy workloads. 
 
On startup, the application rehydrates its in-memory state from SQLite, 
allowing the dashboard to show recent history even after a reboot or power 
interruption. The persistence layer is deliberately minimal and does not 
attempt to function as a long-term analytics store, aligning with the project’s 
focus on operational awareness rather than data warehousing. 

10 



 

Live Updates 

 
To provide real-time updates without the overhead of WebSockets, the 
system uses Server-Sent Events. Clients connect to /api/stream and receive a 
continuous event stream that includes telemetry updates, node presence 
changes, new messages, and hub status changes. This approach works well 
on low-power hardware and integrates cleanly with standard browser APIs. 
 
If a client cannot maintain an SSE connection, the frontend falls back to 
periodic polling of REST endpoints, ensuring basic functionality even in 
degraded conditions. 
 

Authentication and Sessions 

 
The hub implements a simple single-user authentication model suitable for a 
local, offline system. Login is handled via /auth/login, which verifies 
credentials against a password hash generated using Python’s standard 
library scrypt implementation. This avoids the need for heavy native 
dependencies while still providing a memory-hard key derivation function. 
 
Authenticated sessions are tracked using a signed cookie created with 
itsdangerous. The session secret and password hash are stored in 
configuration or environment variables and never hard-coded. There is no 
account creation flow, role system, or external identity provider, by design. 

11 



 

API Surface 

 
The REST API exposes a small, focused set of endpoints that mirror the hub’s 
internal responsibilities. Clients can query live node summaries and per-node 
details, retrieve recent message history, and check hub health and radio 
connectivity. The API also supports sending text messages into the mesh, 
requesting telemetry or position updates from specific nodes, and assigning 
local nicknames that are stored only on the hub. 

Frontend Dashboard 

 
The frontend is a single-page HTML and JavaScript application served 
directly by the backend. It has no external CDN dependencies and is fully 
self-contained, allowing the hub to operate without internet access. The UI 
uses standard browser APIs, fetch for REST calls, and SSE for live updates. 
 
The dashboard presents a node table with live status indicators, a detail 
panel for inspecting telemetry and metadata, and a message view that 
supports sending and replying to mesh messages. A lightweight 
canvas-based map plots GPS positions using a fixed bounding box centered 
on local regions in Ontario. This avoids the complexity and resource cost of 
full mapping libraries while still providing spatial awareness. 

12 


	 
	Table of Contents 
	 
	Introduction 
	System Overview and Field Validation 
	Hardware Overview 
	Design Overview 
	T-Beam Enclosure 
	Raspberry Pi Zero 2 W Hub Enclosure 

	Software Architecture Overview 
	Backend Service 
	Meshtastic Integration 
	Node State Model 
	Persistence Layer 
	Live Updates 
	Authentication and Sessions 
	API Surface 
	Frontend Dashboard 


