®

FieldMesh.

Rapid-Deploy Mesh Communications Hub.




Table of Contents

Table of Contents
Introduction
System Overview and Field Validation
Hardware Overview
Design Overview
T-Beam Enclosure
Raspberry Pi Zero 2 W Hub Enclosure
Software Architecture Overview
Backend Service
Meshtastic Integration
Node State Model
Persistence Layer
Live Updates
Authentication and Sessions
API Surface
Frontend Dashboard

oo NuUuTulh WWN

N T G
NN =2 2 OV



1

N 4

The goal of this project was to build a small, self-contained mesh
communications and sensing system that can operate without any external
network infrastructure. The system is designed to demonstrate how
low-power, long-range radios can be combined with local web technologies
to collect, relay, and visualize data from distributed devices. A key
requirement is that the system remains fully local and offline, while still
being accessible from common user devices through a standard web
browser.

System Overview and Field Validation

At its core, this system is a way for small, battery-powered devices to talk to
each other over long distances without relying on cellular networks, Wi-Fi
infrastructure, or the internet. Each device can send short messages and
status updates, and the network automatically figures out how to relay
those messages across multiple hops until they reach their destination. A
central hub can then collect everything the network is doing and present it
in a form that is easy for a person to understand.

In practical terms, this means devices can be placed far apart in the field and
still communicate as long as there is a chain of nodes between them.



Messages do not need to travel directly from one device to another. Instead,
intermediate nodes repeat traffic as needed, allowing the network to
extend well beyond the range of a single radio link.

The system was tested using three nodes: two end nodes and one
intermediate relay positioned between them. In this configuration, the relay
node acted as a hop, forwarding traffic between the two endpoints. Under
normal outdoor conditions with a modest elevation difference, the network
achieved a maximum tested range of approximately 12 kilometers between
the two endpoints. This distance was reached without specialized antennas
or towers, using standard LoRa hardware and typical environmental
conditions.

During testing, the nodes were able to reliably send and receive text
messages across the mesh. Messages originating at one end node were
successfully relayed through the intermediate node and received at the far
endpoint, confirming correct multi-hop behavior. In addition to messaging,
the system continuously logged GPS position data and telemetry from each
node, including device status information. This data was collected by the hub
and displayed in real time through the local web interface.

These tests demonstrate that the system functions as intended both as a
communications network and as a distributed sensing platform. Nodes are
able to operate independently in the field, relay traffic for one another, and
report their state back to a central hub. The result is a portable,
infrastructure-free mesh network that can provide situational awareness,
messaging, and telemetry over distances well beyond what short-range
wireless technologies typically allow.

Hardware Overview

The mesh network itself is formed by LilyGO T-Beam devices running
Meshtastic firmware. Each T-Beam integrates an ESP32 microcontroller, a
LoRa radio, and GPS, allowing nodes to exchange messages and telemetry
over a multi-hop LoRa mesh. These nodes act both as data sources and as
relays, automatically forwarding traffic for other nodes in the network.

The hub is built around a Raspberry Pi Zero 2 W connected to a T-Beam node
over USB. The Pi runs custom hub software that interfaces with the mesh
radio and serves a local web dashboard. Any device with Wi-Fi and a web
browser can connect to the hub to view node status, telemetry, and



messages, making the system easy to access without specialized client
software or an internet connection.

Design Overview

The physical design of the system focuses on durability, modularity, and ease
of use, while keeping the overall form factor compact and practical for
portability and field use. Both enclosures were designed specifically around
their roles in the system and around how they are used together.

T-Beam Enclosure




The T-Beam enclosure was designed as a snug, tool-free protective shell that
clips together without screws or external hardware. The internal geometry
closely follows the T-Beam PCB, ensuring the board is held firmly in place
and protected from movement or impact. The enclosure is printed in ABS
and avoids thin, unsupported features, which makes it mechanically strong
and resistant to cracking. It has been drop tested and is robust enough to
survive typical handling and accidental drops.

Functional access was a key requirement. The case includes cutouts for the
USB port, physical buttons, and the onboard display, allowing full use of the
device without removing it from the enclosure. Two small external ears are
integrated into the design to hold the LoRa antenna securely when it is not
actively deployed, reducing strain on the connector and making the unit
easier to transport.

A defining feature of the T-Beam enclosure is the integrated bayonet-style
connector at the bottom. This provides a standardized mechanical interface
for modular attachments. Depending on the use case, this connector can
accept a simple blanking plate, a magnetic mount for attaching the device to
metal surfaces, or a mating connector on another enclosure.



Raspberry Pi Zero 2 W Hub Enclosure

The Raspberry Pi Zero 2 W enclosure was designed with minimal size and
hub-specific operation in mind. Openings are provided only for the two
micro-USB ports: one for power input and one for the USB connection to the
T-Beam acting as the radio bridge.

Like the T-Beam enclosure, the Pi case is made of two snap-fit halves that
can be opened without tools to access the board when needed. The top of
the enclosure features a male bayonet connector that mates directly with
the connector on the T-Beam case. This allows the Pi hub and the T-Beam to
physically lock together into a single unit when operating in hub mode,
making it easier to handle, power, and access the local web interface during
setup or use.

Together, the two enclosures form a modular physical system that mirrors
the software architecture: independent components that can operate on
their own, or securely combine into a compact, integrated hub when needed.



Software Architecture Overview

The software component of this project is a self-contained local hub service
designed to run on a Raspberry Pi Zero 2W. Its role is to bridge a low-power
LoRa mesh network to a secure, offline web dashboard that users can access
over local Wi-Fi. The system is intentionally cloud-free and dependency-light,
prioritizing reliability, clarity, and ease of deployment in constrained
environments.

At a high level, the hub software performs four core functions. It interfaces
with a Meshtastic radio over USB, maintains live and recent state for all mesh
nodes, serves a browser-based dashboard over HTTP, and manages local
authentication and session state. All of this logic lives in a single FastAPI
application, making the system easy to work with, deploy, and extend.

Backend Service

The backend is a Python FastAPI application implemented in a single entry
point, main.py. When started, it binds to 0.0.0.0 on port 8000 and serves
both a REST API and a static frontend. The choice of FastAPI provides an
asynchronous runtime, structured request handling, and clear separation
between internal state and exposed endpoints, while remaining lightweight
enough for the low processing power of a Pi Zero 2 W.

Configuration is loaded at startup from config.json, with environment
variables allowed to override sensitive values such as the password hash,
session secret, serial port, and telemetry port number. This allows the same
codebase to be used in development, testing, and deployment without
modification.



Meshtastic Integration

NODES 2 seen NODE DETAIL

TK-2

RE!
2-TH2

LAST SEEN ENV LINK Last seen: 38s ago Hops: -- SHR: 10.75 dB Channel: --

65 ago - — hops / -- dB Battery: 4.09V GPS: --

Nickname
38s ago L = -- hops / 10.75 dB

Save

Request Location Request Telemetry

TELEMETRY

MESSAGES 8 recent SEND

Destination

TK-2

Message Recieved

Reply

The hub connects to a Meshtastic-compatible radio over USB using the
meshtastic.serial_interface.Seriallnterface. Once connected, it subscribes to
incoming packets from the mesh network. These include standard
Meshtastic text messages as well as custom telemetry packets sent on a
configured application port.

Incoming packets are normalized immediately on receipt. Binary and
protobuf-backed Meshtastic objects are converted into JSON-safe Python
structures so they can be safely stored, streamed to clients, and serialized by
FastAPI without runtime errors. This normalization layer is a key resilience
feature, as it prevents API failures caused by unexpected packet contents or
schema changes.

OTE




Node State Model

The backend maintains an in-memory model representing the current view
of the mesh. Each node entry tracks identifiers, optional nicknames,
last-seen timestamps, recent telemetry samples, position data, device
metrics such as battery level, and basic link statistics when available.
Telemetry history and message logs are implemented as rolling buffers
whose size is configurable, ensuring predictable memory usage.

This in-memory model is treated as the authoritative live state. All API

responses and live updates are derived from it, allowing the frontend to
remain simple and stateless.

Persistence Layer

Authed Radio online (.FdewttyACMl]) Uptime: 1398m

ISR Hub
Loca

NODES 2 seen NODE DETAIL
Battery: 4.10V GPS: --

Nickname
LAST SEEN v LINK

57s ago 4 - -- hops / -- dB
Save
23h ago - -- hops / 10.75 dB
Request Location Request Telemetry

TELEMETRY

y: —- / Pressure: -
: 97% / Flags: --

Persistence is optional and enabled via configuration. When active, the
backend uses a local SQLite database named hub.db with WAL mode
enabled. Telemetry records and message history are written to disk in a
lightweight schema designed for append-heavy workloads.

On startup, the application rehydrates its in-memory state from SQLite,
allowing the dashboard to show recent history even after a reboot or power
interruption. The persistence layer is deliberately minimal and does not
attempt to function as a long-term analytics store, aligning with the project’s
focus on operational awareness rather than data warehousing.

10



Live Updates

To provide real-time updates without the overhead of WebSockets, the
system uses Server-Sent Events. Clients connect to /api/stream and receive a
continuous event stream that includes telemetry updates, node presence
changes, new messages, and hub status changes. This approach works well
on low-power hardware and integrates cleanly with standard browser APIs.

If a client cannot maintain an SSE connection, the frontend falls back to

periodic polling of REST endpoints, ensuring basic functionality even in
degraded conditions.

Authentication and Sessions

ISR Hub

Local mesh command desk

LOGIN

Authenticate to access the mesh dashboard.

The hub implements a simple single-user authentication model suitable for a
local, offline system. Login is handled via /auth/login, which verifies
credentials against a password hash generated using Python's standard
library scrypt implementation. This avoids the need for heavy native
dependencies while still providing a memory-hard key derivation function.

Authenticated sessions are tracked using a signed cookie created with
itsdangerous. The session secret and password hash are stored in
configuration or environment variables and never hard-coded. There is no
account creation flow, role system, or external identity provider, by design.

11



API Surface

The REST API exposes a small, fFocused set of endpoints that mirror the hub’s
internal responsibilities. Clients can query live node summaries and per-node
details, retrieve recent message history, and check hub health and radio
connectivity. The API also supports sending text messages into the mesh,
requesting telemetry or position updates from specific nodes, and assigning
local nicknames that are stored only on the hub.

Frontend Dashboard

ISR Hub

Authed Radio online (.’dewttyACf.‘\D) Uptime: 1397m
Local mesh command desk

User Local Node
admin 1oc741730

NODES 2 seen NODE DETAIL

Select a node to view telemetry, position, and acti

LINK

-- hops / -- dB

-- hops / 10.75 dB

NODE MAP

Vaughan, ON

The frontend is a single-page HTML and JavaScript application served
directly by the backend. It has no external CDN dependencies and is fully
self-contained, allowing the hub to operate without internet access. The Ul
uses standard browser APIs, fetch for REST calls, and SSE for live updates.

The dashboard presents a node table with live status indicators, a detail
panel for inspecting telemetry and metadata, and a message view that
supports sending and replying to mesh messages. A lightweight
canvas-based map plots GPS positions using a fixed bounding box centered
on local regions in Ontario. This avoids the complexity and resource cost of
full mapping libraries while still providing spatial awareness.

12



	 
	Table of Contents 
	 
	Introduction 
	System Overview and Field Validation 
	Hardware Overview 
	Design Overview 
	T-Beam Enclosure 
	Raspberry Pi Zero 2 W Hub Enclosure 

	Software Architecture Overview 
	Backend Service 
	Meshtastic Integration 
	Node State Model 
	Persistence Layer 
	Live Updates 
	Authentication and Sessions 
	API Surface 
	Frontend Dashboard 


